
DisProTrack: DistributedProvenanceTracking
over ServerlessApplications

Utkalika Satapathy1, Rishabh Thakur1, Subhrendu Chattopadhyay1, Sandip Chakraborty2

1IIT Kharagpur, Kharagpur, India 721302
2IDRBT, Hyderabad, India 500057

This work is accepted in Infocom 2023

Abstract
Provenance tracking, crucial for debugging system vulnerabilities, is widely employed. Existing models focus on monolithic applications, but modern DevOps-based
service architectures pose challenges. This paper introduces a novel Universal Provenance Graph (UPG) approach, utilizing a Loadable Kernel Module (LKM) for
runtime unit identification and a log optimization method for effective provenance tracking in serverless architectures. Evaluation with various benchmarked serverless
applications demonstrates the model’s effectiveness.

DisProtrack Oveview
Contributions:
1. Design of the UPG from application and system logs: Static analyzer module generates
the application-specific Log Message String-Control Flow Graph (LMS-CFG) from the application binaries
which provides a profile of the application.
2. Runtime execution unit identification: Developed a Linux LKM that can intercept the system
calls generated during execution time to identify the semantic relationship between the system logs and the
application logs.
3. Utilization of Regular Expression to improve search efficacy: Instead of storing the raw log
messages in the UPG, we propose conversion and storage of an equivalent regular expression.

Phy HW

Host OS

Universal
log

Phy HW

Host OS

Legends
 App
Logs

System
Logs

Micro
Service

Log Accumulator

Docker Logging
Daemons

LKMPHY HW

App Logs

Process
Auditd

Audit Logs
Static Analyzer

Angr
Framework

Log
Acc.

LCU

Universal Log

UPG Gen
UPG for

Regex

Exe Part
Identifier

PreProcessor

(PID,TIMESTAMP) || LOG

LMS-CFG

UPG for

UPG for

COMBINED
UPG

Figure 3. Left side, Environment Setup. Right side, DisProTrack Execution Flow.

Provenance Graphs
Provenance data is the metadata of a process cap-
turing origin and modification details throughout
its lifecycle. The resulting Provenance Graph is
a causal graph depicting dependencies between
system subjects (e.g., processes) and objects (e.g.,
files, network sockets).

http://y.y.y.y:80http://x.x.x.x:88

http://localhost:3000/login.php

PHP-FPM

MYSQL ht
tp
://
lo
ca
lh
os
t:3
00
0/
lw
el
co
m
e.
ph
p

mal.sh /etc/*release

http://u.u.u.u:80/

Client Gateway

Attacker

Figure 1. The Top Figure shows an Adversarial
Model for Confidential Data Theft, and the bottom

figure shows the UPG generated for the same.

Log Message Generating Function
It is a library function used for printing a LMS
in either terminals, specific log store files, or log
databases. For example, consider the following C
code snippet with a popular logging library Log4C.
log4c_category_log(NULL,
LOG4C_PRIORITY_ERROR,"Hello World!");
Here the LMS is Hello World! and the LMGF is
log4c_category_log.

Figure 2. Example of CFG and LMS-CFG

UPG Construction - Challenges

1. Combining application logs from different
micro-services: Log messages formatting, times-
tamp formatting, process descriptors vary
2. Combining the system log with the appli-
cation logs: Container-based sandboxing shares
same pid namespace
3. Identification of execution units
4. Dependency explosion and handling con-
founding root causes: Reverse query results
more than one root cause

Results and Analysis
1) Since DisProTrack is targeted for serverless applications; resource overhead is a major concern. Therefore,
experimentally we want to understand the resource overhead of the framework.

 0.1

 1

 10

 100

 1000

M
a

g
ic

k

M
y

S
q

l

P
H

P
-F

P
M

A
p

a
c

h
e

2

O
p

e
n

V
P

N

W
g

e
t

D
y

n
a

m
o

D
B

T
im

e
(s

)

 0.1

 1

 10

 100

 1000

M
a

g
ic

k

M
y

S
q

l

P
H

P
-F

P
M

A
p

a
c

h
e

2

O
p

e
n

V
P

N

W
g

e
t

D
y

n
a

m
o

D
B

M
e

m
(M

B
)

 0.1

 1

 10

 100

 1000

M
a

g
ic

k

M
y

S
q

l

P
H

P
F

P
M

A
p

a
c

h
e

2

O
p

e
n

V
P

N

W
g

e
t

D
y

n
a

m
o

D
B

L
M

S
(#

)

 0.03125

 0.15625

 0.78125

 3.90625

 19.5312

M
a

g
ic

k

M
y

S
q

l

P
H

P
-F

P
M

A
p

a
c

h
e

2

O
p

e
n

V
P

N

W
g

e
t

D
y

n
a

m
o

D
B

S
iz

e
(M

B
)

Figure 4. Performance Evaluation - Static Analysis – The Y-axes are in logarithmic scale

Figure 5. Performance Evaluation - Runtime Analysis

2) We also want to understand how effective DisProTrack is for identifying malicious activities

Foo1(j)Foo2(j)

int k;
if(j%==2)

printf("") printf("")

printf("")
FILE *fd

if(f==NULL)

printf("")

Entry

printf("")

fprintf(STDERR,"")

return
-1

return 0

fprintf(f,"")
if(ret <23)

return
-1

return 0

printf("")

"Empty function\n"

"Start\n"

`testfile\.txt`

"Call Foo2, j=[0-9]*\n"

"End\n"

"Call Foo1, j=[0-9]*\n"

"Error: File open \n"

"Write to testfile.txt\n" `STDERR`

"Error writing to file\n"

Figure 6. Left Side: PoC Program, Middle and Right Side: A PoC Case Study to Analyze the Accuracy of
DisProTrac

Conclusion
1. DisProTrack can be deployed as a microservice on top of the SLC without instrumenting the source code
of the applications
2. Implementation is open-sourced
3. DisProTrack has a minimal memory footprint (∼KB) & responds within 20s-30s.
Acknowledgement
I would like to thank the “Infocom 2023” organizers for awarding me with the student travel grant

Contact Me
DisProTrack GitHub:https://github.com/
usatpath01/DisProTrack
My Homepage: https://usatpath01.github.io/

